According to the requirements of the increasing development for optical transmission systems, a novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes based on the subgroup of the finite field multiplicative group is proposed. Furthermore, this construction method can effectively avoid the girth-4 phenomena and has the advantages such as simpler construction, easier implementation, lower encoding/decoding complexity, better girth properties and more flexible adjustment for the code length and code rate. The simulation results show that the error correction performance of the QC-LDPC(3 780,3 540) code with the code rate of 93.7% constructed by this proposed method is excellent, its net coding gain is respectively 0.3 dB, 0.55 dB, 1.4 dB and 1.98 dB higher than those of the QC-LDPC(5 334,4 962) code constructed by the method based on the inverse element characteristics in the finite field multiplicative group, the SCG-LDPC(3 969,3 720) code constructed by the systematically constructed Gallager (SCG) random construction method, the LDPC(32 640,30 592) code in ITU-T G.975.1 and the classic RS(255,239) code which is widely used in optical transmission systems in ITU-T G.975 at the bit error rate (BER) of 10-7. Therefore, the constructed QC-LDPC(3 780,3 540) code is more suitable for optical transmission systems.
Gx Works 2 1.98 Download
PermittedFor non-commercial purposes:Read, print & download
Text & data mine
Translate the article
Not PermittedReuse portions or extracts from the article in other works
Redistribute or republish the final article
Sell or re-use for commercial purposes
Elsevier's open access license policy 2ff7e9595c
Comments